RIEMANNIAN GEOMETRY EXCERCISE 12

- 1. (Conjugate points)
- (1) Prove that the antipodal points p, q in the *n*-dimensional sphere $\mathbb{S}^n(\frac{1}{\sqrt{k}})$ of radius $\frac{1}{\sqrt{k}}$ are conjugate points.
- (2) Compute the multiplicity of the antipodal points $p, q \in \mathbb{S}^n(\frac{1}{\sqrt{k}})$ as conjugate points.

2. Prove the following version of Gauss lemma: Given $p \in M$ and $V \in T_pM$ in the domain of definition of \exp_p , let $\gamma(t) := \exp_p(tV), t \in [0, 1]$ be the geodesic with $\gamma(0) = p, \dot{\gamma}(0) = V$. Then for any $W \in T - pM$, we have

 $\langle V, W \rangle = \langle (d \exp_p)_{(V)}(V), (d \exp_p)_{(V)}(W) \rangle,$

where $d \exp_p(V)$, the derivative of \exp_p at the point $V \in T_pM$, is applied to the vectors V and W considered as vectors in $T_V(T_pM)$, i.e., as vectors tangent to T_pM at the point V.

(Hint: Using the fact that $U(t) := (d \exp_p)_{(tV)}(tW)$ is the variation field of the geodesic variation, $F(t, x) := \exp_p t(V + sW)$ and, therefore, is a Jacobi field with $\dot{U}(0) = W$. Hence $\langle V, W \rangle = \langle \dot{\gamma}(0), \dot{U}(0) \rangle$).