RIEMANNIAN GEOMETRY
 EXCERCISE 12

1. (Conjugate points)
(1) Prove that the antipodal points p, q in the n-dimensional sphere $\mathbb{S}^{n}\left(\frac{1}{\sqrt{k}}\right)$ of radius $\frac{1}{\sqrt{k}}$ are conjugate points.
(2) Compute the multiplicity of the antipodal points $p, q \in \mathbb{S}^{n}\left(\frac{1}{\sqrt{k}}\right)$ as conjugate points.
2. Prove the following version of Gauss lemma: Given $p \in M$ and $V \in T_{p} M$ in the domain of definition of $\exp _{p}$, let $\gamma(t):=\exp _{p}(t V), t \in[0,1]$ be the geodesic with $\gamma(0)=p, \dot{\gamma}(0)=V$. Then for any $W \in T-p M$, we have

$$
\langle V, W\rangle=\left\langle\left(d \exp _{p}\right)_{(V)}(V),\left(d \exp _{p}\right)_{(V)}(W)\right\rangle,
$$

where $\left.d \exp _{p}\right)_{(V)}$, the derivative of $\exp _{p}$ at the point $V \in T_{p} M$, is applied to the vectors V and W considered as vectors in $T_{V}\left(T_{p} M\right)$, i.e., as vectors tangent to $T_{p} M$ at the point V.
(Hint: Using the fact that $U(t):=\left(d \exp _{p}\right)_{(t V)}(t W)$ is the variation field of the geodesic variation, $F(t, x):=\exp _{p} t(V+s W)$ and, therefore, is a Jacobi field with $\dot{U}(0)=W$. Hence $\langle V, W\rangle=\langle\dot{\gamma}(0), \dot{U}(0)\rangle)$.

